Abstract

This paper presents a novel rapid estimation method (REM) to perform stochastic impact analysis of grid-edge technologies (GETs) to the power distribution networks. The evolution of network states' probability density functions (PDFs) in terms of GET penetration levels are characterized by the Fokker-Planck equation (FPE). The FPE is numerically solved to compute the PDFs of network states, and a calibration process is also proposed such that the accuracy of the REM is maintained for large-scale distribution networks. The approach is illustrated on a large-scale realistic distribution network using a modified version of the IEEE 8500 feeder, where electric vehicles (EVs) or photovoltaic systems (PVs) are installed at various penetration rates. It is demonstrated from quantitative analyses that the results from our proposed approach have negligible errors comparing with those obtained from Monte Carlo simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.