Abstract

A rapid method for determining low activity concentrations of 210Pb in drinking water was developed and tested. The method consists of a few stages for sample preparation that involve passing 12 L of water through a column with acrylic fibers implanted with MnO2 (used to adsorb 210Pb). The MnO2 fibers are oven-dried, compressed and measured by a broad-energy germanium detector used to quantify 210Pb via its characteristic 46.5 keV γ-ray. The time taken for sample preparation is approximately 4 h and recovery factors for lead in tap water of 87 ± 3% were achieved. After a measurement duration of 4 h, the minimum detectable activity concentration reaches 0.02 Bq/L for 210Pb, being well below the respective limit for drinking water in Israel (0.2 Bq/L) as well as the value recommended by the World Health Organization (0.1 Bq/L). Furthermore, a measurement duration of 48 h provides a minimum detectable activity concentration of ∼0.006 Bq/L, which is similar in magnitude to other, well-established methods that rely on lengthy and rather complex procedures. Thus, the combination of MnO2 fibers and gamma-ray spectrometry may be attractive for routine use by analytical laboratories that monitor radioactivity in drinking water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.