Abstract

• A DEM model is used to study the flow characteristics of a rapid granular avalanche subject to an obstacle. • The free flow shows slightly anisotropic stress state, whereas the disturbed flow shows strongly anisotropic stress state. • A shear band develops at a distance of roughly twice the particle diameter above the basal surface. • A stronger shear band forms in the upstream region near the obstacle due to granular jamming. • On the centerline of the chute, the principal direction of the normal stresses is nearly parallel to the flow direction. Granular flows are constrained by applied stresses. When a granular flow moves rapidly and impinges on an obstacle, the stress is significantly increased along the contact force networks. Granular stresses are still incompletely understood. The aim of this study is to investigate a rapid avalanche of spherical glass beads in an inclined chute with a small fixed semi-cylindrical obstacle by using particle image velocimetry (PIV) technique and discrete element method (DEM). The proposed DEM model produces good agreement with the corresponding avalanche experiment in terms of the velocity profiles. The validated DEM results are then used to explore the internal flow characteristics of a granular avalanche that are not directly observable in experiments, such as the solid fraction, the average coordination number and the granular stress. Rectangular measurement cells, similar to representative volume elements, are developed to determine the spatial variation in stresses for the granular avalanche. The internal flow characteristics of a rapid granular avalanche with and without obstacles are compared. For the unobstructed flow, the normal and shear stresses decrease in the downstream direction because the solid fraction and the average coordination number decrease, resulting from the gravitational acceleration. On the other hand, granular jamming forms in front of the semi-cylindrical obstacle and results in a significant increase in the normal and shear stresses. The unobstructed flow shows slightly anisotropic stress states, giving an earth pressure coefficient of approximately 1.0, whereas the disturbed flow exhibits strongly anisotropic stress states. The simulation results show that the corresponding earth pressure coefficient can be much higher than unity and increases to a maximum value of roughly 5.0. A shear band develops at a distance of roughly twice the particle diameter above the basal surface and a stronger shear band forms in the upstream vicinity of the obstacle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call