Abstract
Abstract To improve the efficiency of node cooperation and multiple access performance in multihop wireless networks, a rapid cooperation-differentiated medium access control (MAC) protocol is proposed. In the protocol, the helper selection process is divided into a priority differentiation phase and contention resolution phase for helpers with the same priority. A higher priority helper can choose an earlier minislot in the priority differentiation phase to send a busy tone. As a result, the protocol promptly selects all the highest priority helpers. The contention resolution phase for the same priority helpers can use any existing collision resolution scheme, such as the k-round elimination contention scheme. Helpers sending a busy tone first can proceed to the next round, while others, sensing the busy tone, subsequently withdraw from contention. Therefore, a unique optimal helper is selected from the highest priority helpers with high probability. A packet piggyback mechanism is also adopted, which allows a high data rate helper with its own data packets, to transmit these to their recipient without reservation. This significantly decreases the reservation overhead and effectively improves cooperation efficiency and channel utilization. Simulation results show that the maximum throughput of the proposed protocol is 39.6% and 9.6% higher than those of the cooperative MAC-aggregation (CoopMACA) and instantaneous relay-based cooperative MAC protocols, respectively, in a wireless local area network environment, and 40.8% and 31.9% higher, respectively, in an ad hoc network environment.
Highlights
In multihop wireless networks, signal fading in the data transmission process and signal interference among users or nodes have a significant impact on the quality of signal reception and system capacity
We propose a rapid cooperation-differentiated medium access control (MAC) (RCD-MAC) protocol for multihop wireless networks
The proposed protocol adopts a packet piggyback mechanism, i.e., a high data rate helper with a packet to send can piggyback its reservation information on the data packet relayed on behalf of the sender, which means that its data packet is sent to its recipient immediately after the end of the cooperative data packet transmission without further reservation handshakes
Summary
Signal fading in the data transmission process and signal interference among users or nodes have a significant impact on the quality of signal reception and system capacity. To address the problems of error bursts and the limited signal transmission distance of high data rate nodes, the DC-MAC protocol [10] adopts a cooperative ARQ mechanism and randomly chooses one of the helpers with a high enough received signal-to-noise ratio (SNR) for its transmitted signal at the recipient to retransmit the data packet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: EURASIP Journal on Wireless Communications and Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.