Abstract
Restoring wetlands is expensive, and methods for evaluating restoration condition are needed. This study developed chronosequences for use in ecological assessments (EAs) of restoration projects for Carolina Bay wetlands (CBWs) in the Southeastern US that were previously used for agriculture. An empirical method was also developed to estimate saturation levels to be used with the chronosequences. Data were collected from nine restored CBWs whose restoration ages ranged from 0 to 23 years. Plots were sorted into four Hydrologic Groups: 0–13 (Group 1), 14–50 (Group 2), 51–100 (Group 3), and 101+ (Group 4) consecutive days of saturation within 30 cm of the soil surface during the growing season. Litter thickness, tree basal area, and potential tree height were measured within a variable radius plot using a 10-factor prism across all Hydrologic Groups. Litter thickness and tree height reached an equilibrium at 15 years since restoration once crown closure occurred at the sites. In Groups 1 and 2, tree basal area reached an equilibrium at 15 years, and in Groups 3 and 4 it increased linearly to 23 and 21 years. Regression equations were developed (R2 = 0.57–0.73) to estimate saturation duration based on hydrology indicators, litter thickness, potential tree height, and soil type. These results showed that chronosequences and saturation duration would be useful for proposing performance standards in restored CBWs at time periods ranging from 5 to 23 years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.