Abstract

Tacrolimus (TAC) is an immunosuppressant widely used in organ transplantation, but its extremely low aqueous solubility causes poor intestinal absorption. There have been efforts to develop an alternative TAC formulation with an improved dissolution rate and oral bioavailability (BA), and the development of a rapid and sensitive analytical method for its in vivo pharmacokinetic study is an essential prerequisite. Thus, here, we develop a novel method to determine TAC in rat whole blood based on liquid chromatography and tandem mass spectrometry, and liquid-liquid extraction (LLE) with mild temperature ultrasonication. For rapid and efficient separation of TAC from other hydrophobic compounds, a C8 column was chosen with isocratic mobile phase elution. With the help of the high specificity and the high sensitivity of multiple reaction monitoring in positive ion mode, the present method showed good performance including specificity, linearity (r(2)≥0.996 within 1-200ng/mL), sensitivity (the lower limit of quantitation at 1ng/mL), intra- and inter-day accuracy (88.7-104.5%) and precision (≤10.3%), and recovery (94.7-102.6%). Also, the stability of TAC and ascomycin, the internal standard, in rat whole blood was confirmed before and after the sample preparation. The validated method was satisfactorily applied to a pharmacokinetic study to determine TAC in rat whole blood following oral administration of the marketed product (Prograf(®), Astellas Pharma). In the present study, LLE with mild temperature ultrasonication was successfully expanded to the determination of a drug from whole blood or plasma for the first time. Therefore, the present method can contribute to the rapid in vivo evaluation of novel TAC formulations, and will be able to contribute to the development of TAC formulations with a higher dissolution rate and a higher BA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.