Abstract

A rapid and sensitive cataluminescence (CTL)-based gas sensor using nanosized Cr4TiO8 as a probe was proposed for direct determination of acetone in air. Trace acetone was firstly absorbed on active carbon at room temperature to concentrate, then desorbed at 84°C to determine. The sensor showed high selectivity to acetone at wavelength of 430nm, satisfying activity at temperature of 366°C and good stability at carrier flow rate of 115 ml/min. The linear range of CTL intensity versus concentration of acetone was 2.5~150 mg/m3, and the detection limit (3σ) was 1.2 mg/m3. The recovery of artificial sample was 94.1%—106.2% by this method. The response to formaldehyde and ethanol was insignificant, and there was no response to SO2, CO and benzene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call