Abstract

A rapid and selective assay was developed to measure cell surface hydrophobicity of brewer's yeast cells. During this so-called magnobead assay, bottom-fermenting yeast cells adhere to paramagnetic, polystyrene-coated latex beads which can easily be removed from the cell suspension by using a (samarium-cobalt) magnet. At pH 4 center dot 5, electrostatic repulsion between yeast cells and latex beads was found to be minimal and yeast cell adhesion was predominantly based on hydrophobic interactions. The percentage of cells adhering to the beads could be calculated and provided a measure for cell surface hydrophobicity. Cell surface hydrophobicity measured by the magnobead assay was found to yield similar results, as did determination of contact angles of water droplets on a layer of yeast cells, a standard method for measuring surface hydrophobicity. However, the magnobead assay has the following advantages: (i) it is a quick and simple method, and, more significantly, (ii) hydrophobicity can be measured under physiological conditions. Use of the magnobead assay confirmed that a higher level of cell surface hydrophobicity is correlated with stronger flocculence of brewer's lager yeast cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call