Abstract
The method of enforcing sparsity during magnetic resonance imaging reconstruction has been successfully applied to partially parallel imaging (PPI) techniques to reduce noise and artifact levels and hence to achieve even higher acceleration factors. However, there are two major problems in the existing sparsity-constrained PPI techniques: speed and robustness. By introducing an auxiliary variable and decomposing the original minimization problem into two subproblems that are much easier to solve, a fast and robust numerical algorithm for sparsity-constrained PPI technique is developed in this work. The specific implementation for a conventional Cartesian trajectory data set is named self-feeding Sparse Sensitivity Encoding (SENSE). The computational cost for the proposed method is two conventional SENSE reconstructions plus one spatially adaptive image denoising procedure. With reconstruction time approximately doubled, images with a much lower root mean square error (RMSE) can be achieved at high acceleration factors. Using a standard eight-channel head coil, a net acceleration factor of 5 along one dimension can be achieved with low RMSE. Furthermore, the algorithm is insensitive to the choice of parameters. This work improves the clinical applicability of SENSE at high acceleration factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.