Abstract

The ubiquity of formaldehyde emitted in indoor and in-cabin environments can adversely affect health. This study proposes a novel full-range C-history method to rapidly, accurately and simultaneously determine the three key parameters (initial emittable concentration, partition coefficient, diffusion coefficient) that characterize the emission behaviors of formaldehyde from indoor building and vehicle cabin materials, by means of hybrid optimization. The key parameters of formaldehyde emissions from six building materials and five vehicle cabin materials at various temperatures, were determined. Independent experiments and sensitivity analysis verify the effectiveness and robustness of the method. We also demonstrate that the determined key parameters can be used for predicting multi-source emissions from different material combinations that are widely encountered in realistic indoor and in-cabin environments. Furthermore, based on a constructed vehicle cabin and the determined key parameters, we make a first attempt to estimate the human carcinogenic potential (HCP) of formaldehyde for taxi drivers and passengers at two temperatures (25 °C, 34 °C). The HCP for taxi drivers at both temperatures exceeds 10−6 cases, indicating relatively high potential risk. This study should be helpful for pre-evaluation of indoor and in-cabin air quality, and can assist designers in selecting appropriate materials to achieve effective source control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.