Abstract

A rapid manufacturing process was demonstrated to fabricate a microfluidic device to amplify specific DNA fragments in less than 8 hours. Microfluidics was derived from microelectromechanical system (MEMS) with lithography technique on the substrates of silicon and glass, which made the microfluidic product have a higher fabrication cost and laborious fabrication steps. This rapid approach only requires three steps for a PDMS microfluidic device: metal mold insert manufacturing, PDMS casting, and glass bonding. Each step did not require complicated equipments or procedures, and make this approach very attractive in rapid prototyping and experimental optimization with microfluidic devices. In this work, a brass mold insert was manufactured by a micromilling machine, followed by the standard PDMS casting and glass bonding to fabricate a microfluidic device. Polymerase chain reaction (PCR) to amplify specific DNA fragments, a typical microfluidic example, was successfully realized on this PDMS microfluidic device. This rapid and low cost (compared to conventional lithography) fabrication approach can provide researchers a lower entry to polymeric lab-on-a-chip either on PDMS or thermoplastic substrate for various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.