Abstract
A rapid and efficient method to perform site-directed mutagenesis based on an improved version of overlap extension by polymerase chain reaction (OE-PCR) is demonstrated in this paper. For this method, which we name modified (M)OE-PCR, there are five steps: (1) synthesis of individual DNA fragments of interest (with average 20-bp overlap between adjacent fragments) by PCR with high-fidelity pfu DNA polymerase, (2) double-mixing (every two adjacent fragments are mixed to implement OE-PCR without primers), (3) pre-extension (the teams above are mixed to obtain full-length reassembled DNA by OE-PCR without primers), (4) synthesis of the entire DNA of interest by PCR with outermost primers and template DNA from step 3, (5) post-extension (ten cycles of PCR at 72 degrees C for annealing and extension are implemented). The method is rapid, simple and error-free. It provides an efficient choice, especially for multiple-site mutagenesis of DNAs; and it can theoretically be applied to the modification of any DNA fragment. Using the MOE-PCR method, we have successfully obtained a modified sam1 gene with eight rare codons optimized simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.