Abstract

The artificial bee colony (ABC) algorithm is a powerful population-based metaheuristic for global numerical optimization and has been shown to compete with other swarm-based algorithms. However, ABC suffers from a slow convergence speed. To address this issue, the natural phenomenon in which good individuals always have good genes and thus should have more opportunities to generate offspring is the inspiration for this paper. We propose a ranking-based adaptive ABC algorithm (ARABC). Specifically, in ARABC, food sources are selected by bees to search, and the parent food sources used in the solution search equation are all chosen based on their rankings. The higher a food source is ranked, the more opportunities it will have to be selected. Moreover, the selection probability of the food source is based on the corresponding ranking, which is adaptively adjusted according to the status of the population evolution. To evaluate the performance of ARABC, we compare ARABC with other ABC variants and state-of-the-art differential evolution and particle swarm optimization algorithms based on a number of benchmark functions. The experimental results show that ARABC is significantly better than the algorithms to which it was compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.