Abstract

An algorithm to solve bi-objective quadratic fractional integer programming problems is presented in this paper. The algorithm uses -scalarization technique and a ranking approach of the integer feasible solution to find all nondominated points. In order to avoid solving non-linear integer programming problems during this ranking scheme, the existence of a linear or a linear fractional function is established, which acts as a lower bound on the values of first objective function of the bi-objective problem over the entire feasible set. Numerical examples are also presented in support of the theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.