Abstract
A new Rankine panel method and an extended RANS solver were employed to predict added resistance in head waves at different Froude numbers of a Wigley hull, a large tanker, and a modern containership. The frequency domain panel method, using Rankine sources as basic flow potentials, accounts for the interaction of the linear periodic wave-induced flow with the nonlinear steady flow caused by the ship’s forward speed in calm water, including nonlinear free surface conditions and dynamic squat. Added resistance in waves is obtained by pressure integration method. The time domain RANS solver, based on a finite volume method, is extended to solve the nonlinear equations of the rigid body six-degrees-of-freedom ship motions. The favorable comparison of panel and RANS predictions demonstrated that the Rankine method is suitable to efficiently obtain reliable predictions of added resistance of ships in waves. Comparable model test predictions correlated less favorably although overall agreement was felt to be acceptable, considering the difficulties associated with procedures to obtain accurate measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.