Abstract

In the classical sequential assignment problem, “machines” are to be allocated sequentially to “jobs” so as to maximize the expected total return, where the return from an allocation of job j to machine k is the product of the value x j of the job and the weight p k of the machine. The set of m machines and their weights are given ahead of time, but n jobs arrive in sequential order and their values are usually treated as independent, identically distributed random variables from a known univariate probability distribution with known parameter values. In the paper, we consider a rank-based version of the sequential selection and assignment problem that minimizes the sum of weighted ranks of jobs and machines. The so-called “secretary problem” is shown to be a special case of our sequential assignment problem (i.e., m = 1). Due to its distribution-free property, our rank-based assignment strategy can be successfully applied to various managerial decision problems such as machine scheduling, job interview, kidney allocations for transplant, and emergency evacuation plan of patients in a mass-casualty situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.