Abstract
There has recently been renewed recognition of the need to understand the consistency properties that must be preserved when a generalized matrix inverse is required. The most widely known generalized inverse, the Moore-Penrose pseudoinverse, provides consistency with respect to orthonormal transformations (e.g., rotations of a coordinate frame), and a recently derived inverse provides consistency with respect to diagonal transformations (e.g., a change of units on state variables). Another well-known and theoretically important generalized inverse is the Drazin inverse, which preserves consistency with respect to similarity transformations. In this paper we note a limitation of the Drazin inverse is that it does not generally preserve the rank of the linear system of interest. We then introduce an alternative generalized inverse that both preserves rank and provides consistency with respect to similarity transformations. Lastly we provide an example and discuss experiments which suggest the need for algorithms with improved numerical stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.