Abstract

Space-time coding has been studied extensively as a powerful error correction coding for systems with multiple transmit antennas. An important design goal is to maximize the level of space diversity that a code can achieve. Toward this goal, the only systematic algebraic coding theory so far is binary rank theory by Hammons and El Gamal (see ibid. vol. 46, p.524-42, 2000) for binary phase-shift keying (BPSK) modulated codes defined over binary field and quaternary phase-shift keying (QPSK) modulated codes defined over modulo four finite ring. To design codes with higher bandwidth efficiency, we develop an algebraic rank theory to ensure full space diversity for 2/sup 2k/ quadrature and amplitude modulated (QAM) codes for any positive integer k. The theory provides the most general sufficient condition of full space diversity so far. It includes the BPSK binary rank theory as a special case. Since the condition is over the same domain that a code is defined, the full space diversity code design is greatly simplified. The usefulness of the theory is illustrated in examples, such as analyses of existing codes, constructions of new space-time codes with better performance, including the full diversity space-time turbo codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.