Abstract

In order to investigate the genetic diversity and influence of climate oscillations on evolutionary processes of organisms in northwest China, we selected Hexinia polydichotoma, a species endemic to China, and examined the geographic pattern of genetic variation in its entire cover range, Tarim Basin and adjacent areas. In the study, 22 chloroplast (cp) haplotypes were identified based on two cpDNA sequences (trnH–psbA and ycf6–psbM), and five ITS sequence variations were found. Shown in the cp haplotype network, the two common cp haplotypes mainly distributed along the northern and southern rims of the basin respectively and intersected in the center of the basin, whereas in the ITS network, ITS genotype 1 was widespread across the whole distribution area, and rare genotypes were concentrated in the western rim of the basin. Genetic variation primarily occurred among populations and SAMOVA groups. Fragmented desert habitat may have caused gene flow barrier among populations or groups far from each other, leading to significant genetic differentiation at these levels. It appears that expansion and contraction cycles of river systems and oases during the middle Pleistocene was the source of the observed fragmentation. Geographic range expansion in H. polydichotoma was supported by the significant value for Tajima's D, Fu's FS, and by a unimodal mismatch distribution. It was possible that the enlargement of the Taklimakan Desert during the middle Pleistocene may have provided appropriate conditions for the range dispersal. We identified western rim of the basin as the center of genetic diversity of H. polydichotoma based on the present dataset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call