Abstract

The adoption of smart meters may bring new privacy concerns to the general public. Given the fact that metering data of individual homes/factories is accumulated every 15 minutes, it is possible to infer the pattern of electricity consumption of individual users. In order to protect the privacy of users in a completely de-centralized setting (i.e., individuals do not communicate with one another), we propose a novel protocol, which allows individual meters to report the true electricity consumption reading with a pre-determinted probability. Load serving entities (LSE) can reconstruct the total electricity consumption of a region or a district through inference algorithm, but their ability of identifying individual users' energy consumption pattern is significantly reduced. Using simulated data, we verify the feasibility of the proposed method and demonstrate performance advantages over existing approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.