Abstract

In this paper, we combine the operator splitting methodology for abstract evolution equations with that of stochastic methods for large-scale optimization problems. The combination results in a randomized splitting scheme, which in a given time step does not necessarily use all the parts of the split operator. This is in contrast to deterministic splitting schemes which always use every part at least once, and often several times. As a result, the computational cost can be significantly decreased in comparison to such methods. We rigorously define a randomized operator splitting scheme in an abstract setting and provide an error analysis where we prove that the temporal convergence order of the scheme is at least 1/2. We illustrate the theory by numerical experiments on both linear and quasilinear diffusion problems, using a randomized domain decomposition approach. We conclude that choosing the randomization in certain ways may improve the order to 1. This is as accurate as applying e.g. backward (implicit) Euler to the full problem, without splitting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.