Abstract

We present a fast randomized least-squares solver for distributed-memory platforms. Our solver is based on the Blendenpik algorithm, but employs multiple random projection schemes to construct a sketch of the input matrix. These random projection sketching schemes, and in particular the use of the randomized Discrete Cosine Transform, enable our algorithm to scale the distributed memory vanilla implementation of Blendenpik to terabyte-sized matrices and provide up to ×7.5 speedup over a state-of-the-art scalable least-squares solver based on the classic QR algorithm. Experimental evaluations on terabyte scale matrices demonstrate excellent speedups on up to 16,384 cores on a Blue Gene/Q supercomputer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.