Abstract

We present an algorithm that generalizes the randomized incremental subgradient method with fixed stepsize due to Nedić and Bertsekas [SIAM J. Optim., 12 (2001), pp. 109–138]. Our novel algorithm is particularly suitable for distributed implementation and execution, and possible applications include distributed optimization, e.g., parameter estimation in networks of tiny wireless sensors. The stochastic component in the algorithm is described by a Markov chain, which can be constructed in a distributed fashion using only local information. We provide a detailed convergence analysis of the proposed algorithm and compare it with existing, both deterministic and randomized, incremental subgradient methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.