Abstract

SummaryHigh‐dimensionality reduction techniques are very important tools in machine learning and data mining. The method of generalized low rank approximations of matrices (GLRAM) is a popular technique for dimensionality reduction and image compression. However, it suffers from heavily computational overhead in practice, especially for data with high dimension. In order to reduce the cost of this algorithm, we propose a randomized GLRAM algorithm based on randomized singular value decomposition (RSVD). The theoretical contribution of our work is threefold. First, we discuss the decaying property of singular values of the matrices during iterations of the GLRAM algorithm, and provide a target rank required in the RSVD process from a theoretical point of view. Second, we establish the relationship between the reconstruction errors generated by the standard GLRAM algorithm and the randomized GLRAM algorithm. It is shown that the reconstruction errors generated by the former and the latter are comparable, even if the solutions are computed inaccurately during iterations. Third, the convergence of the randomized GLRAM algorithm is investigated. Numerical experiments on some real‐world data sets illustrate the superiority of our proposed algorithm over its original counterpart and some state‐of‐the‐art GLRAM‐type algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.