Abstract

In Robbins' problem of minimizing the expected rank, a finite sequence of $n$ independent, identically distributed random variables are observed sequentially and the objective is to stop at such a time that the expected rank of the selected variable (among the sequence of all $n$ variables) is as small as possible. In this paper we consider an analogous problem in which the observed random variables are the steps of a symmetric random walk. Assuming continuously distributed step sizes, we describe the optimal stopping rules for the cases $n=2$ and $n=3$ in two versions of the problem: a version in which the actual steps of the random walk are disclosed to the decision maker; and a version in which only the relative ranks of the positions taken by the random walk are observed. When $n=3$, the optimal rule and expected rank depend on the distribution of the step sizes. We give sharp bounds for the optimal expected rank in the partial information version, and fairly sharp bounds in the full information version.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call