Abstract
ABSTRACT We describe a semi-analytic model to predict the triaxial shapes of dark matter haloes utilizing the sequences of random merging events captured in merger trees to follow the evolution of each halo’s energy tensor. When coupled with a simple model for relaxation toward a spherical shape, we find that this model predicts distributions of halo axis length ratios that approximately agree with those measured from cosmological N-body simulations once constrained to match the median axial ratio at a single halo mass. We demonstrate the predictive and explanatory power of this model by considering conditioned distributions of axis length ratios, and the mass dependence of halo shapes, finding these to be in good agreement with N-body results. This model provides both insight into the physics driving the evolution of halo triaxial shapes, and rapid quantitative predictions for the statistics of triaxiality connected directly to the formation history of the halo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.