Abstract
AbstractGrowth in agricultural total factor productivity (TFP), which explains most of the long‐term growth in U.S. agricultural output, may be slowing. The Economic Research Service (ERS) of the USDA is confident that current levels of below‐average growth will eventually regain the long‐term trend line. Others disagree, arguing instead that due to declining public expenditures on agricultural research, TFP growth experienced a downward and seemingly permanent structural shift about 30 years ago. In this paper, I argue that neither perspective is accurate since agricultural TFP is best modeled as a random walk with drift and thus not governed by a deterministic trend line. When I use a first difference model to accommodate the unit root, I do not find a structural break in the rate of drift. However, I acknowledge that this finding may not be general because I show that my test for a structural break has low power. To add theoretical relevance, I develop a simple model of stochastic innovation and farm technology adoption, and then use simulation results from my model to explain why a random walk for agricultural TFP is a theoretically sound proposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.