Abstract

This study uses highway accident data collected in the State of Washington, between 2011 and 2013, to study the factors that affect accident injury-severities. To account for the fixed thresholds limitation of the traditional ordered probability models – which typically leads to incorrect estimation of outcome probabilities for the intermediate categories – and for the possibility of unobserved factors systematically varying across the observations, a random thresholds hierarchical ordered probit model with random parameters is estimated. This approach simultaneously allows the explanatory parameters to vary across roadway segments, and the thresholds to vary both as a function of explanatory parameters and across the observations, thus accounting for unobserved and threshold heterogeneity, respectively. Using goodness-of-fit measures, likelihood ratio tests and forecasting accuracy measures, the model estimation results are compared with the hierarchical and fixed thresholds ordered probit model counterparts, with fixed and random parameters. The comparative assessment among the ordered probit modeling approaches reveals the relative benefits and the overall statistical superiority of the random thresholds random parameters hierarchical ordered probit model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.