Abstract

We propose a random-matrix model for families of elliptic curve L-functions of finite conductor. A repulsion of the critical zeros of these L-functions away from the centre of the critical strip was observed numerically by Miller (2006 Exp. Math. 15 257–79); such behaviour deviates qualitatively from the conjectural limiting distribution of the zeros (for large conductors this distribution is expected to approach the one-level density of eigenvalues of orthogonal matrices after appropriate rescaling). Our purpose here is to provide a random-matrix model for Miller’s surprising discovery. We consider the family of even quadratic twists of a given elliptic curve. The main ingredient in our model is a calculation of the eigenvalue distribution of random orthogonal matrices whose characteristic polynomials are larger than some given value at the symmetry point in the spectra. We call this sub-ensemble of SO(2N) the excised orthogonal ensemble. The sieving-off of matrices with small values of the characteristic polynomial is akin to the discretization of the central values of L-functions implied by the formulae of Waldspurger and Kohnen–Zagier. The cut-off scale appropriate to modelling elliptic curve L-functions is exponentially small relative to the matrix size N. The one-level density of the excised ensemble can be expressed in terms of that of the well-known Jacobi ensemble, enabling the former to be explicitly calculated. It exhibits an exponentially small (on the scale of the mean spacing) hard gap determined by the cut-off value, followed by soft repulsion on a much larger scale. Neither of these features is present in the one-level density of SO(2N). When N → ∞ we recover the limiting orthogonal behaviour. Our results agree qualitatively with Miller’s discrepancy. Choosing the cut-off appropriately gives a model in good quantitative agreement with the number-theoretical data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.