Abstract

BackgroundMachine learning methodologies are gaining popularity for developing medical prediction models for datasets with a large number of predictors, particularly in the setting of clustered and longitudinal data. Binary Mixed Model (BiMM) forest is a promising machine learning algorithm which may be applied to develop prediction models for clustered and longitudinal binary outcomes. Although machine learning methods for clustered and longitudinal methods such as BiMM forest exist, feature selection has not been analyzed via data simulations. Feature selection improves the practicality and ease of use of prediction models for clinicians by reducing the burden of data collection. Thus, feature selection procedures are not only beneficial, but are often necessary for development of medical prediction models. In this study, we aim to assess feature selection within the BiMM forest setting for modeling clustered and longitudinal binary outcomes. MethodsWe conducted a simulation study to compare BiMM forest with feature selection (backward elimination or stepwise selection) to standard generalized linear mixed model feature selection methods (shrinkage and backward elimination). We also evaluated feature selection methods to develop models predicting mobility disability in older adults using the Health, Aging and Body Composition Study dataset as an example utilization of the proposed methodology. ResultsBiMM forest with backward elimination generally offered higher computational efficiency, similar or higher predictive performance (accuracy and area under the receiver operating curve), and similar or higher ability to identify correct features compared to linear methods for the different simulated scenarios. For predicting mobility disability in older adults, methods generally performed similarly in terms of accuracy, area under the receiver operating curve, and specificity; however, BiMM forest with backward elimination had the highest sensitivity. ConclusionsThis study is novel because it is the first investigation of feature selection for developing random forest prediction models for clustered and longitudinal binary outcomes. Results from the simulation study reveal that BiMM forest with backward elimination has the highest accuracy (performance and identification of correct features) and lowest computation time compared to other feature selection methods in some scenarios and similar performance in other scenarios. Many informatics datasets have clustered and longitudinal outcomes and results from this study suggest that BiMM forest with backward elimination may be beneficial for developing medical prediction models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.