Abstract
In the parlance of relational structures, the Finite Ramsey Theorem states that the class of all finite chains has the Ramsey property. A classical result from the 1980s claims that the class of all finite posets with a linear extension has the Ramsey property. In 2010 Sokić proved that the class of all finite structures consisting of several linear orders has the Ramsey property. This was followed by a 2017 result of Solecki and Zhao that the class of all finite posets with several linear extensions has the Ramsey property.Using the categorical reinterpretation of the Ramsey property in this paper we prove a common generalization of all these results. We consider multiposets to be structures consisting of several partial orders and several linear orders. We allow partial orders to extend each other in an arbitrary but fixed way, and require that every partial order is extended by at least one of the linear orders. We then show that the class of all finite multiposets conforming to a fixed template has the Ramsey property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.