Abstract
Jordan (J Econ Theory 131(1):26–44, 2006) defined ‘pillage games’, a class of cooperative games whose dominance operator is represented by a ‘power function’ satisfying coalitional and resource monotonicity axioms. In this environment, he proved that stable sets must be finite. We provide a graph theoretical interpretation of the problem which tightens the finite bound to a Ramsey number. We also prove that the Jordan pillage axioms are independent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.