Abstract

Raman spectroscopy has been used to study the thermal transformations of natural magnesium oxalate dihydrate known in mineralogy as glushinskite. The data obtained by Raman spectroscopy was supplemented with that of infrared emission spectroscopy. The vibrational spectroscopic data was complimented with high resolution thermogravimetric analysis combined with evolved gas mass spectrometry. TG–MS identified two mass loss steps at 146 and 397 °C. In the first mass loss step water is evolved only, in the second step carbon dioxide is evolved. The combination of Raman microscopy and a thermal stage clearly identifies the changes in the molecular structure with thermal treatment. Glushinskite is the dihydrate phase in the temperature range up to the pre-dehydration temperature of 146 °C. Above 397 °C, magnesium oxide is formed. Infrared emission spectroscopy shows that this mineral decomposes at around 400 °C. Changes in the position and intensity of the CO and CC stretching vibrations in the Raman spectra indicate the temperature range at which these phase changes occur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call