Abstract

To discriminate the risk stratification in gastrointestinal stromal tumors (GISTs) by preoperatively constructing a model of nonenhanced computed tomography (NECT). A total of 111 GISTs patients (77 in the training group and 34 in the validation Group) from two hospitals between 2015 and 2022 were collected retrospectively. One thousand and thirty-seven radiomics features were extracted from non-contract CT images, and the optimal radiomics signature was determined by univariate analysis and LASSO regression. The radiomics model was developed and validated from the ten optimal radiomics features by three methods. Covariates (clinical features, CT findings, and immunohistochemical characteristics) were collected to establish the clinical model, and both the radiomics features and the covariates were used to build the combined model. The effectiveness of the three models was evaluated by the Delong test. The experimental results showed that the clinical models (75.3%, 70.6%), the radiomics models (79.2%, 79.4%) and the combined models (81.8%, 82.4%) all had high accuracy in predicting the pathological risk of GIST in both training and validation groups. The AUC values of the combined models were significantly higher in both the training groups (0.921 vs 0.822, p= 0.032) and the validation groups (0.913 vs 0.792, p= 0.019) than that of the clinical models. According to the calibration curve, the combined model nomogram is clinically useful. The clinical-radiomics combined model and based on NECT performed well in discriminating the risk stratification in GISTs. As a quantitative technique, radiomics is capable of predicting the malignant potential and guiding treatment preoperatively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.