Abstract

To differentiate glioblastoma (GBM) from solitary brain metastases (MET) using radiomic analysis. Two hundred and fifty-three patients with solitary brain tumours (157 GBM and 98 solitary brain MET) were split into a training cohort (n=178) and a validation cohort (n=77) by stratified sampling using computer-generated random numbers at a ratio of 7:3. After feature extraction, minimum redundancy maximum relevance (mRMR) and the least absolute shrinkage and selection operator (LASSO) were used to build the radiomics signature on the training cohort and validation cohort. Performance was assessed by radiomics score (Rad-score), receiver operating characteristic (ROC) curve, calibration, and clinical usefulness. Eleven radiomic features were selected as significant features in the training cohort. The Rad-score was significantly associated with the differentiation between GBM and solitary brain MET (p<0.001) both in the training and validation cohorts. The radiomics signature yielded area under the curve (AUC) values of 0.82 and 0.81 in the training and validation cohorts to distinguish between GBM and solitary brain MET. The radiomics model might be a useful supporting tool for the preoperative differentiation of GBM from solitary brain MET, which could aid pretreatment decision-making.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.