Abstract

The quantitative and qualitative interaction of liposomes with synaptosomes isolated from rat brain was examined using radiolabeled phospholipids and electron microscopy. Liposomes were prepared by sonication and detergent dialysis. Binding (adsorption) of radiolabeled phospholipid to synaptosomes was saturable when liposomes were in the liquid-crystalline state, were electrically neutral (egg-phosphatidylcholine), or carried increasing fractions (10:2 and 10:4 molar ratio) of negatively charged phosphatidic acid. Analysis using the Langmuir isotherm equation indicated a biphasic adsorption behavior. Adsorption increased with increasing temperature (4°C and 37°C). Binding was nonsaturable when liposomes were positively charged with stearylamine or composed of dimyristoylphosphatidylcholine and phosphatidylinositol (10:2 molar ratio). Due to the latter composition's solid state at 4°C, temperature dependency was inverse. Electron micrographs revealed disc-shaped areas of adsorption that were free of integral membrane particles which appeared to form a condensed layer surrounding the areas of liposome adsorption. Following interaction with stearylamine-containing liposomes the vesicular structure of synaptosomes appeared largely destroyed. It is concluded that both liposome surface charge and membrane fluidity determine the extent of interaction with biological membranes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.