Abstract
To determine the integrative value of contrast-enhanced computed tomography (CECT), transcriptomics data and clinicopathological data for predicting the survival of bladder urothelial carcinoma (BLCA) patients. RNA sequencing data, radiomics features and clinical parameters of 62 BLCA patients were included in the study. Then, prognostic signatures based on radiomics features and gene expression profile were constructed by using least absolute shrinkage and selection operator (LASSO) Cox analysis. A multi-omics nomogram was developed by integrating radiomics, transcriptomics and clinicopathological data. More importantly, radiomics risk score-related genes were identified via weighted correlation network analysis and submitted to functional enrichment analysis. The radiomics and transcriptomics signatures significantly stratified BLCA patients into high- and low-risk groups in terms of the progression-free interval (PFI). The two risk models remained independent prognostic factors in multivariate analyses after adjusting for clinical parameters. A nomogram was developed and showed an excellent predictive ability for the PFI in BLCA patients. Functional enrichment analysis suggested that the radiomics signature we developed could reflectthe angiogenesis status of BLCA patients. The integrative nomogram incorporated CECT radiomics, transcriptomics and clinical features improved the PFI prediction in BLCA patients and is a feasible and practical reference for oncological precision medicine. • Our radiomics and transcriptomics models are proved robust for survival prediction in bladder urothelial carcinoma patients. • A multi-omics nomogram model which integrates radiomics, transcriptomics and clinical features for prediction of progression-free interval in bladder urothelial carcinoma is established. • Molecular functional enrichment analysis is used to reveal the potential molecular function of radiomics signature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.