Abstract

Pentachlorophenol (PCP) hydroxylase, the first enzyme in the pathway for degradation of PCP in Sphingobium chlorophenolicum, is an unusually slow flavin-dependent monooxygenase (kcat = 0.02 s–1) that converts PCP to a highly reactive product, tetrachlorobenzoquinone (TCBQ). Using stopped-flow spectroscopy, we have shown that the steps up to and including formation of TCBQ are rapid (5–30 s–1). Before products can be released from the active site, the strongly oxidizing TCBQ abstracts an electron from a donor at the active site, possibly a cysteine residue, resulting in an off-pathway diradical state that only slowly reverts to an intermediate capable of completing the catalytic cycle. TCBQ reductase, the second enzyme in the PCP degradation pathway, rescues this nonproductive complex via two fast sequential one-electron transfers. These studies demonstrate how adoption of an ancestral catalytic strategy for conversion of a substrate with different steric and electronic properties can lead to subtle yet (literally) radical changes in enzymatic reaction mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.