Abstract

Efficient synthesis of enantioenriched amines is of great importance due to their significant synthetic and biological applications. Photoredox-mediated asymmetric α-amino C(sp3)-H functionalization offers an atom-economical and sustainable approach to access chiral amines. However, the development of analogous reactions is in its early stages, generally affording chiral amines with a single stereocenter. Herein, we present a novel synergistic triple-catalysis approach for the asymmetric α-C-H addition of readily available N-sulfonyl amines to aldehydes under mild conditions. This method allows for the efficient synthesis of a diverse array of valuable β-amino alcohols bearing vicinal stereocenters. Unlike previous reports, our protocol employs a radical approach using earth-abundant Cr catalysis. Quinuclidine plays a dual role by facilitating highly selective hydrogen-atom transfer to generate α-amino radicals and promoting the dissociation of the Cr-O bond, which is crucial for the overall catalytic cycle as evidenced by control, NMR, and DFT experiments. Preliminary mechanistic studies, including radical trapping, nonlinear effect, Stern-Volmer plot, kinetic isotope effect, and Hammett plot, offer valuable insights into the reaction pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call