Abstract

The job-shop environment has been widely studied under different approaches. It is due to its practical characteristic that makes its research interesting. Therefore, the job-shop scheduling problem continues being attracted to develop new evolutionary algorithms. In this paper, we propose a new estimation of distribution algorithm coupled with a radial probability function. The aforementioned radial function comes from the hydrogen element. This approach is proposed in order to build a competitive evolutionary algorithm for the job-shop scheduling problem. The key point is to exploit the radial probability distribution to construct offspring, and to tackle the inconvenient of the EDAs, i.e., lack of diversity of the solutions and poor ability of exploitation. Various instances and numerical experiments are presented to illustrate, and to validate this novel research. The results, obtained from this research, permits to conclude that using radial probability distributions is an emerging field to develop new and efficient EDAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.