Abstract

This paper presents the design of radial basis function neural network controllers (RBFNN) for UPFC to improve the transient stability performance of a power system. The RBFNN uses either a single neuron or multi-neuron architecture and the parameters are dynamically adjusted using an error surface derived from active or reactive power/voltage deviations at the UPFC injection bus. The performance of the new single neuron controller is evaluated using both single-machine infinite-bus and three-machine power systems subjected to various transient disturbances. In the case of three-machine 8-bus power system, the performance of the single neuron RBF controller is compared with a BP (backpropagation) algorithm based multi-layered ANN controller. Further it is seen that by using a multi-input multi-neuron RBF controller, instead of a single neuron one, the critical clearing time and damping performance are improved. The new RBFNN controller for UPFC exhibits a superior damping performance in comparison to the existing PI controllers. Its simple architecture reduces the computational burden thereby making it attractive for real-time implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.