Abstract

In this study, a radial basis function neural network (RBFNN) model was developed and implemented in a multi-objective optimization procedure to determine the optimal hydraulic loading rate (HLR), hydraulic retention time (HRT), and mass loading rates (MLR) for enhanced removal of nitrogen and phosphorus by an integrated surface flow treatment wetland–pond system treating drinking source water in Yancheng, China. Prior to modelling, the system’s 6-year nitrogen and phosphorus removal efficiencies were found to trend downwards as effluent concentrations trended positively. Meanwhile, operating parameter interaction effects impacted final effluent quality. Thus, total nitrogen and total phosphorus removal were simulated by an RBFNN model with satisfactory R2 of 0.99 and 0.98 respectively. Optimal average HLR, HRT and MLR for 80% simultaneous removal efficiencies were subsequently determined to be 0.10860 ± 0.03 md-1, 30.43 ± 9.96 d and 306.416 ± 89.54 mgm-2d-1 respectively. The results highlight the feasibility of the RBFNN modelling based optimization procedure for treatment wetlands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.