Abstract

This work presents the non-symmetric fuzzy means algorithm which is a new methodology for training Radial Basis Function neural network models. The method is based on a non-symmetric fuzzy partition of the space of input variables which results to networks with smaller structures and better approximation capabilities compared to other state-of-the-art training procedures. The lower modeling error and the smaller size of the produced models become particularly important when they are used in online applications. This is demonstrated by integrating the model produced by the proposed algorithm in a Model Predictive Control configuration, resulting in better control performance and shorter computational times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.