Abstract
Abstract Convective snow (CS) presents a significant hazard to motorists and is one of the leading causes of weather-related fatalities on Pennsylvania roadways. Thus, understanding environmental factors promoting CS formation and organization is critical for providing relevant and accurate information to those impacted. Prior research has been limited, mainly focusing on frontal CS bands often called “snow squalls”; thus, these studies do not account for the diversity of CS organizational modes that is frequently observed, highlighting a need for a robust climatology of broader CS events. To identify such events, a novel, radar-based CS detection algorithm was developed and applied to WSR-88D radar data from 10 cold seasons in central Pennsylvania, during which 159 cases were identified. Distinct convective organization modes were identified: linear (frontal) snow squalls, single cells, multicells, and streamer bands. Each algorithm-flagged radar scan containing CS was manually classified as one of these modes. Interestingly, the most-studied frontal mode only occurred <5% of the time, whereas multicellular modes dominated CS occurrence. Using the times associated with each CS mode, synoptic and local environmental information from model analyses was investigated. Key characteristics of CS environments compared to null cases include a 500-hPa trough in the vicinity, lower-tropospheric conditional instability, and sufficient moisture. Environments favorable for the different CS modes featured statistically significant differences in the 500-hPa trough axis position, surface-based CAPE, and the unstable layer depth, among others. These results provide insights into forecasting CS mode, explicitly presented in a forecasting decision tree. Significance Statement Convective snow events such as snow squalls are a leading cause of weather-related deaths on Pennsylvania roads. Research into these events is limited, thus negatively impacting forecast skill. To better understand convective snow event frequency of occurrence, inter- and intra-annual variability, and their supporting environments, we performed a 10-yr radar-based climatology of these events. We report the results of this climatology and on the statistically significant differences in their supporting environments. The latter are used to propose a forecasting framework for convective snow, which may improve the predictability of convective snow in an operational setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.