Abstract

Repair of chromosomal DNA double-strand breaks by homologous recombination is essential for cell survival and genome stability. Within eukaryotic cells, this repair pathway requires a search for a homologous donor sequence and a subsequent strand invasion event on chromatin fibers. We employ a biotin-streptavidin minichromosome capture assay to show that yRad51 or hRad51 presynaptic filaments are sufficient to locate a homologous sequence and form initial joints, even on the surface of a nucleosome. Furthermore, we present evidence that the Rad54 chromatin-remodeling enzyme functions to convert these initial metastable products of the homology search to a stable joint molecule that is competent for subsequent steps of the repair process. Thus, contrary to popular belief, nucleosomes do not pose a potent barrier for successful recognition and capture of homology by an invading presynaptic filament.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call