Abstract

Although vein grafts have been commonly used as autologous grafts in revascularization surgeries for ischemic diseases, the long-term patency remains poor because of the acceleration of intimal hyperplasia due to the exposure to arterial blood pressure. The present protocol is designed for the establishment of experimental venous intimal hyperplasia by interposing rabbit jugular veins to the ipsilateral carotid arteries. The protocol does not require surgical procedures deep in the body trunk and the extent of the incision is limited, which is less invasive for the animals, allowing long-term observation after implantation. This simple procedure enables researchers to investigate strategies to attenuate the progression of intimal hyperplasia of the implanted vein grafts. Using this protocol, we reported the effects transduction of microRNA-145 (miR-145), which is known to control the phenotype of vascular smooth muscle cells (VSMCs) from the proliferative to the contractile state, into harvested vein grafts. We confirmed the attenuation of intimal hyperplasia of vein grafts by transducing miR-145 before implantation surgery through the phenotype change of the VSMCs. Here we report a less invasive experimental platform to investigate the strategies that can be used to attenuate intimal hyperplasia of vein grafts in revascularization surgeries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call