Abstract

Right ventricular (RV) failure from increased pressure loading is a frequent consequence of acquired and congenital heart diseases. However, the mechanisms involved in their pathophysiology are still unclear, and few data exist on RV pressure-loading models and early versus late effects on RV and left ventricular responses. We characterized a rabbit model of chronic RV pressure overload and early-late effects on biventricular function. Twenty-one New Zealand white rabbits were randomized into 3 groups: (i) sham, (ii) pulmonary artery (PA) banding (PAB) for 3 weeks (PAB3W) and (iii) PAB for 6 weeks (PAB6W). Progressive RV pressure overload was created by serial band inflation using an adjustable device. Molecular, echocardiographic and haemodynamic studies were performed. RV pressure overload was achieved with clinical manifestations of RV failure. Heart and liver weights were significantly higher after PAB. PAB-induced echocardiographic ventricular remodelling increased wall thickness and stress and ventricular dilation. Cardiac output (ml/min) (sham 172.4 ± 42.86 vs PAB3W 103.1 ± 23.14 vs PAB6W 144 ± 60.9, P = 0.0027) and systolic and diastolic functions decreased; with increased RV end-systolic and end-diastolic pressures (mmHg) (sham 1.6 ± 0.66 vs PAB3W 3.9 ± 1.8 vs PAB6W 5.2 ± 2.2, P = 0.0103), despite increased contractility [end-systolic pressure-volume relationship (mmHg/ml), sham 3.76 ± 1.76 vs PAB3W 12.21 ± 3.44 vs PAB6W 19.4 ± 6.88, P < 0.0001]. Functional parameters further worsened after PAB6W versus PAB3W. LV contractility increased in both the PAB groups, despite worsening of other invasive measures of systolic and diastolic functions. We describe a novel, unique model of chronic RV pressure overload leading to early biventricular dysfunction and fibrosis with further progression at 6 weeks. These findings can aid in guiding management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call