Abstract

We present combinatorial upper bounds on dimensions of certain imaginary root spaces for symmetric Kac-Moody algebras. These come from the realization of the corresponding infinity-crystal using quiver varieties. The framework is general, but we only work out specifics in rank two. In that case we give explicit bounds. These turn out to be quite accurate, and in many cases exact, even for some fairly large roots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.