Abstract

In a loss-of-viability screen of small molecules against methicillin resistant S. aureus (MRSA) USA300, we found a small molecule, designated DNAC-2, which has an MIC of 8 μg/ml. DNAC-2 is a quinolinol derivative that is bactericidal at 2X MIC. Macromolecular synthesis assays at 2X MIC of DNAC-2 inhibited DNA, cell wall, RNA and protein synthesis within fifteen to thirty minutes of treatment when compared to the untreated control. Transmission electron microscopy of DNAC-2 treated cells revealed a significantly thicker cell wall and impaired daughter cell separation. Exposure of USA300 cells to 1X MIC of DNAC-2 resulted in mislocalization of PBP2 away from the septum in an FtsZ independent manner. In addition, membrane localization with FM4-64, as well as depolarization study with DiOC2 and lipophilic cation TPP+ displayed membrane irregularities and rapid membrane depolarization in DNAC-2 treated cells vs. untreated control. However, DNAC-2 exhibited almost no toxicity towards eukaryotic membranes. Notably, DNAC-2 drives energy generation towards substrate level phosphorylation and the bacteria become more sensitive to DNAC-2 under anaerobic conditions. We propose that DNAC-2 affects USA300 by targeting the membrane, leading to partial membrane depolarization and subsequently affecting aerobic respiration and energy-dependent functional organization of macromolecular biosynthetic pathways. The multiple effects may have the desirable consequence of limiting the emergence of resistance to DNAC-2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call