Abstract

In mammals, there are different metabolic pathways in cells that break down fuel molecules to transfer their energy into high energy compounds such as adenosine-5′-triphosphate (ATP), guanosine-5′-triphosphate (GTP), reduced nicotinamide adenine dinucleotide (NADH2), reduced flavin adenine dinucleotide (FADH2) and reduced nicotinamide adenine dinucleotide phosphate (NADPH2). This process is called cellular respiration. In carbohydrate metabolism, the breakdown starts from digestion of food in the gastrointestinal tract and is followed by absorption of carbohydrate components by the enterocytes in the form of monosaccharides. Monosaccharides are transferred to cells for aerobic and anaerobic respiration via glycolysis, citric acid cycle and pentose phosphate pathway to be used in the starvation state. In the normal state, the skeletal muscle and liver cells store monosaccharides in the form of glycogen. In the obesity state, the extra glucose is converted to triglycerides via lipogenesis and is stored in the lipid droplets of adipocytes. In the lipotoxicity state, the lipid droplets of other tissues such as the liver, skeletal muscle and pancreatic beta cells also accumulate triacylglycerol. This event is the axis of the pathogenesis of metabolic dysregulation in insulin resistance, metabolic syndrome and type 2 diabetes. In this paper a summary of the metabolism of carbohydrates is presented in a way that researchers can follow the biochemical processes easily.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.